# **PROPERTIES OF EXPONENTS**

## MULTIPLYING POWERS WITH LIKE BASES

An <u>exponent</u> indicates how many times the base is a factor. In the expression  $2^3$ , the base is 2 and the exponent is 3. The exponent is indicating that the base 2 is a factor 3 times, that is  $2 \cdot 2 \cdot 2 \cdot 2$ .

The expression  $x^4 \cdot x^3$  can be expanded and simplified in the following way  $x^4 \cdot x^3 = x \cdot x \cdot x \cdot x \cdot x \cdot x = x^7$ 

 $x^4$  has four factors of x and is being multiplied to  $x^3$  which has three factors of x, so there is a total of seven factors of x.

## PRODUCT OF POWERS

When multiplying two powers with the same base, add the exponents.

$$x^m \cdot x^n = x^{m+n}$$

*Examples*: Simplify.

| a) $x^{12} \cdot x^3$                                                                       | b) $(2^{17} \cdot y^4)(2^{13} \cdot y^9)$                                                                                                | c) $(x + y)^7 (x + y)^2$ |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| = $x^{12+3}$                                                                                | = $2^{17+13} \cdot y^{4+9}$                                                                                                              | = $(x + y)^{7+2}$        |
| = $x^{15}$                                                                                  | = $2^{30} \cdot y^{13}$                                                                                                                  | = $(x + y)^9$            |
| d) $b^{5/3} \cdot b^{1/3}$<br>= $b^{(\frac{5}{3} + \frac{1}{3})}$<br>= $b^{6/3}$<br>= $b^2$ | e) $(xy^{6})(3x^{2}y^{7})$<br>= $3 \cdot x \cdot x^{2} \cdot y^{6} \cdot y^{7}$<br>= $3 \cdot x^{1+2} \cdot y^{6+7}$<br>= $3x^{3}y^{13}$ |                          |

## EXERCISES:

| (1) $y^4 y^6$ | (2) $(2x^3y^4) (3x^5y^8)$ | (3) $x^{3/5} x^{2/5}$ |
|---------------|---------------------------|-----------------------|
|---------------|---------------------------|-----------------------|



#### EXERCISES:

| $(4) 2^7 x^{10} y^{15}$ | $(5) t^{3}t^{9}$ | $(c)$ $(y-8)^9$ |
|-------------------------|------------------|-----------------|
| $(4) - 2x^5y^7$         | $\binom{3}{t^4}$ | $(0) (y-8)^5$   |

## RAISING A POWER TO A POWER

The expression  $(x^4)^3$  can be expanded and simplified in the following way:  $(x^4)^3 = x^4 \cdot x^4 \cdot x^4 = x^{4+4+4} = x^{12}$ Notice that the exponent of the result  $(x^4)^3$  is the product of the powers 4 and 3.

## POWER OF A POWER

When dividing two powers with the same base, subtract the exponents.

| $(x^m)^n = z$     | $x^{m \cdot n}$                                |
|-------------------|------------------------------------------------|
|                   |                                                |
| b) $(y^7)^2$      | c) $(b^{5/3})^3$                               |
| $= y^{7 \cdot 2}$ | $=b^{\left(\frac{5}{3},\frac{3}{1}\right)}$    |
| $= y^{14}$        | $=b^{\left(\frac{5}{3},\frac{3}{1}\right)}$    |
|                   | $= b^{5}$                                      |
|                   |                                                |
|                   | b) $(y^7)^2$<br>= $y^{7\cdot 2}$<br>= $y^{14}$ |

EXERCISES:

| $(7)(x^3)^4$   | (8) $(x^4)^6(x^2)^3$          | (9) $(z^{1/3})^{6/5}$ |
|----------------|-------------------------------|-----------------------|
| $(1)(\lambda)$ | $(0)$ $(\lambda)$ $(\lambda)$ | (3) (2 )              |

## RAISING A PRODUCT OR QUOTIENT TO A POWER

The expression  $(2x^4y)^3$  can be expanded and simplified the following way:  $(2x^4y)^3 = 2x^4y \cdot 2x^4y \cdot 2x^4y$ 

$$(x \cdot y)^{5} = 2x \cdot y \cdot 2x \cdot y \cdot 2x \cdot y = 2x \cdot y + 2x \cdot y = 2 \cdot 2 \cdot 2 \cdot x^{4} \cdot x^{4} \cdot x^{4} \cdot y \cdot y + y = 2^{1+1+1} \cdot x^{4+4+4} \cdot y^{1+1+1} = 2^{3} \cdot x^{12} \cdot y^{3} = 8x^{12}y^{3}$$

The factors of the product are 2,  $x^4$ , and y. Notice that each factor was cubed, that is  $(2x^4y)^3 = 2^3 \cdot (x^4)^3 \cdot y^3 = 8x^{12}y^3$ 

#### POWER OF A PRODUCT

When dividing two powers with the same base, subtract the exponents.

$$(xy)^n = x^n y^n$$

The expression  $\left(\frac{x^3}{y^2}\right)^3$  can be expanded and simplified the following way:

$$\frac{x^3}{y^2} = \frac{x^3}{y^2} \cdot \frac{x^3}{y^2} \cdot \frac{x^3}{y^2} \cdot \frac{x^3}{y^2}$$
$$= \frac{x^3 \cdot x^3 \cdot x^3}{y^2 \cdot y^2 \cdot y^2}$$
$$= \frac{x^9}{y^6}$$

Notice the numerator  $x^3$  was raised to the third power, that is  $(x^3)^3 = x^9$  and the denominator  $y^2$  was also raised to the third power,  $(y^2)^3 = y^6$ .

#### POWER OF A QUOTIENT

When raising a quotient to a power, raise the numerator to the power and divide by the denominator to the power.

$$\left(\frac{x}{y}\right)^n = \frac{x^n}{y^n}$$

*Example*: Simplify.

a) 
$$(xy)^3$$
 b)  $(2^8y^4)^6$  c)  $\left(\frac{x}{y}\right)^4$  d)  $\left(\frac{2x}{y^4}\right)^3$   
 $= x^3 \cdot y^3$   $= 2^{8 \cdot 6} \cdot y^{4 \cdot 6}$   $= \frac{x^4}{y^4}$   $= \frac{2^3 x^3}{(y^4)^3}$   
 $= x^3y^3$   $= 2^{54} \cdot y^{24}$   $= \frac{8x^3}{y^{12}}$ 

## EXERCISES:

(10) 
$$\left(\frac{c}{d^8}\right)^5$$
 (11)  $\frac{\left(3x^4y\right)^3}{x^5}$  (12)  $\frac{(6x)^5}{(6x)^3}$ 

## EXPONENTS OF 0 AND 1

## THE EXPONENT ONE

For any base x,

$$x^1 = x$$

## THE EXPONENT ZERO

A nonzero base raised to the 0 power is 1. For any nonzero base x,

b) 3<sup>0</sup>

= 1

$$x^{0} = 1$$

**Example:** Simplify.

a)  $(x+2)^1 = x+2$ 

c) 
$$2(4x)^0$$
  
= 2 \cdot 1  
= 2

#### EXERCISES:

(13)  $y^0$  (14)  $(xy)^1(xy)^0$ 

## **NEGATIVE EXPONENTS**

For any real number x that is nonzero and any integer n,

$$x^{-n} = rac{1}{x^n}$$
 and  $rac{1}{x^{-n}} = x^n$ 

For any nonzero real numbers x and y and any integer n,

$$\left(\frac{x}{y}\right)^{-n} = \left(\frac{y}{x}\right)^n$$

where  $x, y \neq 0$ 

*Example*: Simplify.

a) 
$$x^{-3}$$
  
 $= \frac{1}{x^3}$   
 $= 2 \cdot x^{-4}$   
 $= 2 \cdot \frac{1}{x^4}$   
 $= 2 \cdot \frac{1}{x^4}$   
 $= \frac{1}{3^2 \cdot x^4}$   
 $= 2^3$   
 $= 2 \cdot \frac{1}{x^4}$   
 $= \frac{1}{9x^4}$   
 $= 8$   
e)  $\frac{3x^{-3}}{x^{-2}}$   
f)  $\left(\frac{2x^2}{3y^{-3}}\right)^{-4}$   
 $= 3x^{[-3-(-2)]}$   
 $= \left(\frac{3y^{-3}}{2x^2}\right)^4$   
 $= 3x^{-1}$   
 $= \frac{3^4 \cdot y^{-12}}{2^4 \cdot x^8}$   
 $= \frac{3}{x}$   
 $= \frac{81}{16x^8y^{12}}$ 

## EXERCISES:

(15) 
$$x(y^3 \cdot y^{-3})$$
 (16)  $\frac{5t^{-8}}{t^{-3}}$  (17)  $(3x^3y)^{-2}$  (18)  $\left(\frac{2x^2y^{-5}}{3x^0y^3}\right)^{-3}$ 

#### Answers

1.)  $y^{10}$ 2.)  $6x^8y^{12}$ 3.) x4.)  $2^6x^5y^8$ 5.)  $t^8$ 6.)  $(y-8)^4$ 7.)  $x^{12}$ 8.)  $x^{30}$ 9.)  $z^{2/5}$ 10.)  $\frac{c^5}{a^{40}}$ 11.)  $27x^7y^3$ 12.)  $36x^2$ 13.) 1 14.) xy15.) x16.)  $\frac{5}{t^5}$ 17.)  $\frac{1}{9x^6y^2}$ 18.)  $\frac{27y^{24}}{8x^6}$