PROPERTIES OF EXPONENTS

MULTIPLYING POWERS WITH LIKE BASES

An exponent indicates how many times the base is a factor. In the expression 2^{3}, the base is 2 and the exponent is 3 . The exponent is indicating that the base 2 is a factor 3 times, that is $2 \cdot 2 \cdot$ 2.

The expression $x^{4} \cdot x^{3}$ can be expanded and simplified in the following way

$$
x^{4} \cdot x^{3}=x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x=x^{7}
$$

x^{4} has four factors of x and is being multiplied to x^{3} which has three factors of x, so there is a total of seven factors of x.

PRODUCT OF POWERS

When multiplying two powers with the same base, add the exponents.

$$
x^{m} \cdot x^{n}=x^{m+n}
$$

Examples: Simplify.
a) $\begin{aligned} & x^{12} \cdot x^{3} \\ = & x^{12+3} \\ = & x^{15}\end{aligned}$
b) $\left(2^{17} \cdot y^{4}\right)\left(2^{13} \cdot y^{9}\right)$
$=2^{17+13} \cdot y^{4+9}$
$=2^{30} \cdot y^{13}$
e) $\left(x y^{6}\right)\left(3 x^{2} y^{7}\right)$
$=3 \cdot x \cdot x^{2} \cdot y^{6} \cdot y^{7}$
$=3 \cdot x^{1+2} \cdot y^{6+7}$
$=3 x^{3} y^{13}$
$=b^{\left(\frac{5}{3}+\frac{1}{3}\right)}$
$=b^{6 / 3}$

EXERCISES:

(1) $y^{4} y^{6}$
(2) $\left(2 x^{3} y^{4}\right)\left(3 x^{5} y^{8}\right)$
(3) $x^{3 / 5} x^{2 / 5}$

DIVIDING POWERS WITH LIKE BASES

The expression $\frac{x^{5}}{x^{3}}$ can be expanded and simplified in the following way:

$$
\frac{x^{5}}{x^{3}}=\frac{x \cdot x \cdot x \cdot x \cdot x}{x \cdot x \cdot x}=\frac{x \cdot x \cdot x \cdot x \cdot x}{x \cdot x \cdot x}=\frac{x \cdot x}{1}=x^{2}
$$

Note that the exponent of the result x^{2} is the difference between the exponents of x^{5} and x^{3}.

QUOTIENT OF POWERS

When dividing two powers with the same base, subtract the exponents.

$$
\frac{x^{m}}{x^{n}}=x^{m-n}
$$

Examples: Simplify.
a) $\frac{x^{12}}{x^{3}}$
b) $\frac{2^{17} y^{9}}{2^{13} y^{4}}$
$=2^{17-13} \cdot y^{9-4}$
c) $\frac{(x+y)^{7}}{(x+y)^{2}}$
$=x^{12-3}$
$=2^{4} y^{5}$
$=(x+y)^{7-2}$
$=x^{9}$

$$
=(x+y)^{5}
$$

$$
=16 y^{5}
$$

$$
\text { d) } \begin{aligned}
& \frac{b^{4 / 3}}{b^{1 / 3}} \\
== & b^{\left(\frac{4}{3}-\frac{1}{3}\right)} \\
= & b^{3 / 3} \\
= & b
\end{aligned}
$$

$$
\text { e) } \frac{3^{2} x^{8} y^{12}}{3 x^{2} y^{7}}
$$

$$
=3^{2-1} \cdot x^{8-2} \cdot y^{12-7}
$$

EXERCISES:
(4) $\frac{2^{7} x^{10} y^{15}}{2 x^{5} y^{7}}$
(5) $\frac{t^{3} t^{9}}{t^{4}}$
(6) $\frac{(y-8)^{9}}{(y-8)^{5}}$

RAISING A POWER TO A POWER

The expression $\left(x^{4}\right)^{3}$ can be expanded and simplified in the following way:

$$
\left(x^{4}\right)^{3}=x^{4} \cdot x^{4} \cdot x^{4}=x^{4+4+4}=x^{12}
$$

Notice that the exponent of the result $\left(x^{4}\right)^{3}$ is the product of the powers 4 and 3 .

POWER OF A POWER

When dividing two powers with the same base, subtract the exponents.

$$
\left(x^{m}\right)^{n}=x^{m \cdot n}
$$

Example: Simplify.
a) $\left(x^{12}\right)^{3}$
b) $\left(y^{7}\right)^{2}$
$=y^{7 \cdot 2}$
c) $\left(b^{5 / 3}\right)^{3}$
$=b^{\left(\frac{5}{3} \cdot \frac{3}{1}\right)}$
$=x^{12 \cdot 3}$
$=y^{14}$
$=b^{\left(\frac{5 \cdot 3}{3} \frac{3}{1}\right)}$
$=b^{5}$

EXERCISES:
(7) $\left(x^{3}\right)^{4}$
(8) $\left(x^{4}\right)^{6}\left(x^{2}\right)^{3}$
(9) $\left(z^{1 / 3}\right)^{6 / 5}$

RAISING A PRODUCT OR OUOTIENT TO A POWER

The expression $\left(2 x^{4} y\right)^{3}$ can be expanded and simplified the following way:

$$
\begin{aligned}
\left(2 x^{4} y\right)^{3} & =2 x^{4} y \cdot 2 x^{4} y \cdot 2 x^{4} y \\
& =2 \cdot 2 \cdot 2 \cdot x^{4} \cdot x^{4} \cdot x^{4} \cdot y \cdot y \cdot y \\
& =2^{1+1+1} \cdot x^{4+4+4} \cdot y^{1+1+1} \\
& =2^{3} \cdot x^{12} \cdot y^{3} \\
& =8 x^{12} y^{3}
\end{aligned}
$$

The factors of the product are $2, x^{4}$, and y. Notice that each factor was cubed, that is

$$
\left(2 x^{4} y\right)^{3}=2^{3} \cdot\left(x^{4}\right)^{3} \cdot y^{3}=8 x^{12} y^{3}
$$

POWER OF A PRODUCT

When dividing two powers with the same base, subtract the exponents.

$$
(x y)^{n}=x^{n} y^{n}
$$

The expression $\left(\frac{x^{3}}{y^{2}}\right)^{3}$ can be expanded and simplified the following way:

$$
\begin{aligned}
\left(\frac{x^{3}}{y^{2}}\right)^{3} & =\frac{x^{3}}{y^{2}} \cdot \frac{x^{3}}{y^{2}} \cdot \frac{x^{3}}{y^{2}} \\
& =\frac{x^{3} \cdot x^{3} \cdot x^{3}}{y^{2} \cdot y^{2} \cdot y^{2}} \\
& =\frac{x^{9}}{y^{6}}
\end{aligned}
$$

Notice the numerator x^{3} was raised to the third power, that is $\left(x^{3}\right)^{3}=x^{9}$ and the denominator y^{2} was also raised to the third power, $\left(y^{2}\right)^{3}=y^{6}$.

POWER OF A OUOTIENT

When raising a quotient to a power, raise the numerator to the power and divide by the denominator to the power.

$$
\left(\frac{x}{y}\right)^{n}=\frac{x^{n}}{y^{n}}
$$

Example: Simplify.
a) $(x y)^{3}$
$=x^{3} \cdot y^{3}$
b) $\left(2^{8} y^{4}\right)^{6}$
c) $\left(\frac{x}{y}\right)^{4}$
d) $\left(\frac{2 x}{y^{4}}\right)^{3}$
$=\frac{x^{4}}{y^{4}}$
$=\frac{2^{3} x^{3}}{\left(y^{4}\right)^{3}}$
$=x^{3} y^{3}$
$=2^{8 \cdot 6} \cdot y^{4 \cdot 6}$
$=\frac{8 x^{3}}{y^{12}}$

EXERCISES:

(10) $\left(\frac{c}{d^{8}}\right)^{5}$
(11) $\frac{\left(3 x^{4} y\right)^{3}}{x^{5}}$
(12) $\frac{(6 x)^{5}}{(6 x)^{3}}$

EXPONENTS OF o AND 1

THE EXPONENT ONE

For any base x,

$$
x^{1}=x
$$

THE EXPONENT ZERO

A nonzero base raised to the 0 power is 1 . For any nonzero base x,

$$
x^{0}=1
$$

Example: Simplify.
a) $(x+2)^{1}$
b) 3^{0}
c) $2(4 x)^{0}$
$=x+2$
$=1$

$$
=2 \cdot 1
$$

$$
=2
$$

EXERCISES:

(13) y^{0}
(14) $(x y)^{1}(x y)^{0}$

NEGATIVE EXPONENTS

For any real number x that is nonzero and any integer n,

$$
x^{-n}=\frac{1}{x^{n}} \quad \text { and } \quad \frac{1}{x^{-n}}=x^{n}
$$

For any nonzero real numbers x and y and any integer n,

$$
\left(\frac{x}{y}\right)^{-n}=\left(\frac{y}{x}\right)^{n}
$$

where $x, y \neq 0$
Example: Simplify.
a) x^{-3}
b) $2 x^{-4}$
$=2 \cdot x^{-4}$
c) $\frac{3^{-2}}{x^{4}}$
d) $\frac{1}{2^{-3}}$
$=\frac{1}{x^{3}}$
$=2 \cdot \frac{1}{x^{4}}$
$=\frac{1}{3^{2} \cdot x^{4}}$
$=2^{3}$
$=\frac{2}{x^{4}}$
e) $\frac{3 x^{-3}}{x^{-2}}$
f) $\left(\frac{2 x^{2}}{3 y^{-3}}\right)^{-4}$
$=3 x^{[-3-(-2)]}$
$=\left(\frac{3 y^{-3}}{2 x^{2}}\right)^{4}$
$=3 x^{-1}$
$=\frac{3^{4} \cdot y^{-12}}{2^{4} \cdot x^{8}}$
$=\frac{3}{x}$
$=\frac{81}{16 x^{8} y^{12}}$

EXERCISES:

(15) $x\left(y^{3} \cdot y^{-3}\right)$
(16) $\frac{5 t^{-8}}{t^{-3}}$
(17) $\left(3 x^{3} y\right)^{-2}$
(18) $\left(\frac{2 x^{2} y^{-5}}{3 x^{0} y^{3}}\right)^{-3}$

Answers

1.) y^{10}
2.) $6 x^{8} y^{12}$
3.) x
4.) $2^{6} x^{5} y^{8}$
5.) t^{8}
6.) $(y-8)^{4}$
7.) x^{12}
8.) x^{30}
9.) $z^{2 / 5}$
10.) $\frac{c^{5}}{d^{40}}$
11.) $27 x^{7} y^{3}$
12.) $36 x^{2}$
13.) 1
14.) $x y$
15.) x
16.) $\frac{5}{t^{5}}$
17.) $\frac{1}{9 x^{6} y^{2}}$
18.) $\frac{27 y^{24}}{8 x^{6}}$

