Math 260 Course Content and Objectives

COURSE CONTENT AND SCOPE	Hours	COURSE OBJECTIVES
- Lecture: Outline the topics included in the lecture portion of the course (<i>Outline reflects course description, all topics covered in class</i>).	Per Topic	- Lecture: Upon successful completion of this course, the student will be able to(Use action verbs - see <u>Bloom's Taxonomy</u> for 'action verbs requiring cognitive outcomes.')
Polynomial and rational functions: Quadratic functions, polynomial functions, dividing polynomials, real zeros of polynomials, complex numbers, complex zeros, the fundamental theorem	15	Graph quadratic functions using the standard form. Find the maximum and minimum values of a quadratic function and model with quadratic functions.
of algebra, and rational functions.		Graph basic polynomial functions. Determine the end behavior of a polynomial by considering the leading term. Use zeros to graph polynomials. Determine the shape of a graph near a zero. Find local maxima and minima of polynomials.
		Perform long division of polynomials, use synthetic division to evaluate a polynomial. Apply the Remainder and the Factor Theorems to polynomials. Find the rational zeros of a polynomial. Apply Descartes' Rule of Signs and find the upper and lower bounds for zeros of polynomials.
		Apply arithmetic operations on complex numbers. Find square roots of negative numbers. Determine all complex solutions of quadratic equations. Apply the Fundamental Theorem of Algebra to find the complete factorization of a polynomial.
		Find zeros of polynomials and their multiplicities. Know that for real polynomials complex zeros come in conjugate pairs. Find all linear and quadratic factors of a polynomial.
		Find all asymptotes of rational functions. Graph rational functions.
Exponential and logarithmic functions: Exponential functions, the natural exponential function, logarithmic functions, laws of logarithms, exponential and logarithmic equations, and modeling with exponential and logarithmic functions.	15	Draw graphs of exponential functions and logarithmic functions. Compute simple compound interest and continuously compounded interest. Apply the change of base formula. Solve exponential and logarithmic equations. Model with exponential growth and radioactive decay. Apply Newton's Law of Cooling and work with logarithmic scales.
Systems of equations and inequalities: Systems of linear equations in two variables, systems of linear equations in several variables, matrices and systems of linear equations, the algebra of	15	Solve systems of equations by the substitution method, by the elimination method, and by graphical methods. Solve basic word problems with

matrices, inverses of matrices and matrix equations, determinants and Cramer's Rule, partial fractions, systems of nonlinear equations, and systems of inequalities.	systems of equations. Work with matrices to solve a linear system. Solve a linear system by Gaussian elimination and by Gauss- Jordan elimination. Determine whether a linear system is inconsistent or dependent.
	Perform the basic operations of addition, subtraction, and scalar multiplication of matrices. Apply matrix multiplication to word problems. Find the inverse of a non-singular matrix, solve matrix equations, and model with matrix equations.
	Compute the determinant of a square matrix by expanding along a row or a column. Solve square linear systems by Cramer's Rule. Find the area of a triangle by determinants.
	Find the partial fraction decomposition of a rational function when the denominator has distinct linear factors, when the denominator has repeated linear factors, when the denominator has irreducible factors, and when the denominator has repeated irreducible factors.
	Solve simple nonlinear systems by substitution and/or by elimination or by graphical methods, graph inequalities, solve systems of inequalities, and apply these methods to linear systems in feasible regions.
Conic sections: Parabolas, ellipses, hyperbolas, shifted conics, rotation of axes, and polar equations of conics.	15 Give the geometric definition of a parabola, ellipse, and hyperbola. Find the equation and draw the graph of a parabola, ellipse, and hyperbola. Draw the graphs and give the equations of shifted conics. Use parabolas in applications. Find the eccentricity of an ellipse.
	Give the general equation of a conic. Rotate axes to eliminate the xy term in a conic. Use the discriminant to identify a conic. Give a unified geometric description of conics. Give the polar equations of conics.
Sequences and series: Sequences and summation notation, arithmetic sequences, geometric sequences, mathematics of finance, mathematical induction, and the Binomial Theorem.	15 Define a sequence by formula or recursively, find the partial sums of a sequence, and use sigma notation.
	Determine whether a sequence is arithmetic or geometric. Find the partial sums of an arithmetic or geometric

· · · · · · · · · · · · · · · · · · ·		
		sequence. Define what is meant by an infinite series and find the sum of an infinite geometric series.
		Calculate the amount of an annuity and give the present value of an annuity. Find the monthly payment of an installment purchase.
		Define the Principle of Mathematical Induction and prove a simple conjecture by mathematical induction.
		Expand (a+b)^n and give its binomial coefficients. Prove the Binomial Theorem by using mathematical induction.
Limits: Finding limits numerically, finding limits graphically, tangent lines and derivatives, limits at infinity, limits of sequences, and areas.	13	Give the definition of a limit and estimate limits numerically and graphically. Determine whether a limit fails to exist and describe one-sided limits. Apply the limit laws and algebra to find limits, including left- and right- hand limits.
		Define tangent lines, derivatives, and instantaneous rates of change. Use the concept of limit to find the slopes of tangents, instantaneous rates of change, and the derivative of a function.
		Give limits at infinity of a function and give the definition of the limit of a sequence.
		Describe the area problem and give the definition of area.
Final examination.	2	Final examination.
Total:	90	
Total Lecture Hours In Section I Class Hours:	90	

Lab

COURSE CONTENT AND SCOPE - Lab: Outline the topics included in the lecture portion of the course (<i>Outline reflects course description, all topics covered in class</i>).	Hours Per Topic	COURSE OBJECTIVES – Lab: Upon successful completion of this course, the student will be able to(Use action verbs – see <u>Bloom's</u> <u>Taxonomy</u> for 'action verbs requiring cognitive outcomes.')
Review of expressions.	2	Evaluate an expression. Apply the distributive property. Combine like terms. Verify solutions to equations.
Review of solving linear equations.		Solve linear equations using the addition principle. Solve linear equations using the multiplication principle. Solve equations using both the addition and multiplication principles. Plot points in the coordinate plane. Find solutions for equations in two unknowns.
Review of graphing linear equations.		Graph linear equations by plotting solutions. Graph linear equations using intercepts. Graph vertical and horizontal lines.
Review of polynomials.		Add and subtract polynomials. Multiply polynomials. Divide polynomials. Write a polynomial as a product of a monomial greatest common factor (GCF) and a polynomial.
Review of factoring.		Factor by grouping. Factor trinomials of the form $x^2 + bx + c$. Factor trinomials of the form $ax^2 + bx + c$, where a is not equal to 1. Factor special products.
Functions and graphs.	2	Identify the domain and range of a relation and determine if the relation is a function. Identify functions and their domain and range. Find the value of a function. Graph linear functions.
Introduction to functions, function notation, and function operations.		Add or subtract functions, multiply functions, and divide functions.
Systems of linear equations and problem solving.	2	Determine if an ordered pair is a solution for a system of equations. Solve a system of linear equations graphically. Classify systems of linear equations in two unknowns.
Review of solving systems of linear equations in two variables graphically.		Solve systems of linear equations using substitution. Solve applications involving two unknowns using a system of equations.

Review of solving systems of linear equations in two variables by substitution.		Solve systems of linear equations using elimination. Solve applications using elimination.
Review of solving systems of linear equations in two variables by elimination.		Determine if an ordered triple is a solution for a system of equations. Understand the graphs of systems of three equations. Solve a system of three linear equations using the elimination method. Solve applications involving three unknowns using a system of equations.
Solving systems of linear equations in three variables.		Write a system of equations as an augmented matrix. Solve a system of linear equations by transforming its augmented matrix to echelon form.
Solving systems of linear equations using matrices or Cramer's Rule.		Evaluate determinants of 2 x 2 matrices. Evaluate determinants of 3 x 3 matrices. Solve systems of equations using Cramer's Rule.
Inequalities and problem solving: Inequalities, equations, and absolute value.	2	Solve compound inequalities involving 'and.' Solve compound inequalities involving 'or.' Solve equations involving absolute value. Solve absolute value inequalities involving less than. Solve absolute value inequalities involving greater than.
Solving systems of linear inequalities.		Graph the solution set of a system of linear inequalities. Solve applications involving a system of linear inequalities.
Exponents, radicals, radical expressions and functions.	2	Find the nth root of a number. Approximate roots using a calculator. Simplify radical expressions. Evaluate radical functions. Find the domain of radical functions. Solve applications involving radical functions.
Rational exponents.		Evaluate rational exponents. Write radicals as expressions raised to rational exponents. Simplify expressions with rational number exponents using the rules of exponents. Use rational exponents to simplify radical expressions.
Multiplying, dividing, and simplifying radicals.		Multiply and divide radical expressions. Use the product rule to simplify radical expressions.

Adding, subtracting, and multiplying radical expressions.	Add or subtract like radicals. Use the distributive property in expressions containing radicals. Simplify radical expressions that contain mixed operations.
Rationalizing numerators and denominators of radical expressions.	Rationalize denominators. Rationalize denominators that have a sum or difference with a square root term. Rationalize numerators.
Radical equations and problem solving.	Use the power rule to solve radical equations.
Complex numbers.	Write imaginary numbers using i. Perform arithmetic operations with complex numbers. Raise i to powers.
Quadratic functions and equations. Completing the square.	2 Use the square root principle to solve quadratic equations. Solve quadratic equations by completing the square.
Solving quadratic equations using the quadratic formula.	Solve quadratic equations using the quadratic formula. Use the discriminant to determine the number of real solutions that a quadratic equation will have. Find the x- and y- intercepts of a quadratic function. Solve applications using the quadratic formula.
Solving equations that are quadratic in form.	Solve equations by rewriting them in quadratic form. Solve equations that are quadratic in form by using substitution. Solve applications problems using equations that are quadratic in form.
Graphing quadratic equations.	Graph quadratic functions of the form $f(x)$ = ax^2. Graph quadratic functions of the form $f(x) = ax^2 + k$. Graph quadratic functions of the form $f(x) = a(x-$ h)^2. Graph quadratic functions of the form $f(x) = a(x-h)^2 + k$. Graph quadratic functions of the form $f(x) = ax^2 + bx +$ c. Solve applications involving parabolas. Solve quadratic and other inequalities. Solve rational inequalities.
Solving nonlinear inequalities.	

Exponential and logarithmic functions. Composite and inverse functions.	2 Find the composition of two functions. Show that two functions are inverses. Show that a function is one-to- one. Find the inverse of a function. Graph a given function's inverse function.
Exponential functions.	Define and graph exponential functions. Solve equations of the form $b^{x} = b^{a}$ for x. Use exponential functions to solve application problems.
Logarithmic functions.	Convert between exponential and logarithmic forms. Solve logarithmic equations by changing to exponential form. Graph logarithmic functions. Solve applications involving logarithms.
Properties of logarithms.	Apply the inverse property of logarithms. Apply the product, quotient, and power properties of logarithms.
Common and natural logarithms.	Define common logarithms and evaluate them using a calculator. Solve applications using common logarithms. Define natural logarithms and evaluate them using a calculator. Solve applications using natural logarithms.
Exponential and logarithmic equations with applications.	Solve equations that have variables as exponents. Solve equations containing logarithms. Solve applications involving exponential and logarithmic functions. Use the change-of-base formula.
Conic sections: The parabola and the circle.	2 Graph parabolas of the form $x = a(y-k)^2$ + h. Find the distance between two points. Graph circles of the form $(x-h)^2 + (y-k)^2 = r^2$. Find the equation of a circle with a given center and radius. Graph circles of the form $x^2 + y^2 + dx + ey + f$ = 0.
Ellipses and hyperbolas.	Graph ellipses and hyperbolas.
Nonlinear systems of equations.	Solve nonlinear systems of equations using substitution. Solve nonlinear systems of equations using elimination.
	Graph nonlinear inequalities. Graph the solution set of a system of nonlinear inequalities.

Arithmetic sequences and series.	2	Find the terms of a sequence when given the general term. Define and write arithmetic sequences, find their common difference, and find a particular term. Define and write series, find partial sums, and use summation notation. Write arithmetic series and find their sums.
Geometric sequences and series.		Write a geometric sequence and find its common ratio and a specified term. Find partial sums of geometric series. Find the sums of infinite geometric series. Solve applications using geometric series.
Binomial theorem.		Expand a binomial using Pascal's triangle. Evaluate factorial notation and binomial coefficients. Expand a binomial using the binomial theorem. Find a particular term of a binomial expansion.
Total	: 18	
Total Lab Hours In Section I Class Hours	: 18	