Poisson Probability Distribution

Given that X is a Poisson random variable. Find the probability of getting exactly x occurrences.

$$
P(x)=\frac{\mu^{x} \cdot e^{-\mu}}{x!}
$$

Where e is the natural number, $e \approx 2.71828$ and $\mu=$ mean number of occurrences of the event in the interval.

Practice: (Use the above formula)

1. Calculate $\frac{5^{3} \cdot e^{-5}}{3!}$
2. Assume Poisson Probability Distribution with mean of 5.6. Use the formula to find the probability of getting exactly 8 occurrence. That is, find $\mathrm{P}(8)$.

TI Calculator Steps:

1. Press $2^{\text {nd }}$ then, VARS keys to access the DISTR (distributions) menu.
2. Select poissonpdf and click ENTER.
3. Enter the values for λ (which is the mean), and x value to complete the command poissonpdf($\boldsymbol{\mu}, \mathbf{x})$. Press ENTER.

Note:

poissonpdf($\boldsymbol{\mu}, \mathbf{x})$. calculate $\mathrm{P}(\mathrm{x})$, probability of getting exactly x success.
poissoncdf($\boldsymbol{\mu}, \mathbf{x})$. calculate $P($ at most $x)$, probability of getting at most x success.
If you want to calculate P (at least x), use the complement since there is no upper limit for x value. That is, $P($ at least $x)=1-P($ at most $(x-1))$.

Example: The average number of Tl calculator sold on Amazon is 3.5 per hour.
a. Find the probability that in a given hour, Amazon will sell exactly 3 TI calculators.
$P($ Exactly 3$)=P(x=3)=$ poissonpdf $(3.5,3)=0.216$
b. Find the probability that in a given hour, Amazon will sell at most 1 TI calculator.
$P($ at most 1$)=P(x \leq 1)=$ poissoncdf $(3.5,1)=0.136$
c. Find the probability that in a given hour, Amazon will sell at least 2 TI calculator.
$P($ at least 2$)=1-P($ at most 1$)=1-P(x \leq 1)=1-\operatorname{poissoncdf}(3.5,1)=0.864$

Practice:

3. The mean number of students come to the Math Lab is 1.25 per minute. Assume this is a Poisson random variable.
a. Find the probability that no students come into the Math Lab for a given minute.
b. Find the probability that for a given minute, at most 3 students come to the Math Lab.
c. Find the probability that for a given minute, at least 2 students come to the Math Lab.

Answers to practice problems:

1. 0.140
2. 0.0887
3. a. 0.287
b. 0.962
c. 0.355
