PYTHAGOREAN THEOREM

THE PYTHAGOREAN THEOREM

In any right triangle, if a and b are the lengths of the legs and c is the length of the hypotenuse,

$$
a^{2}+b^{2}=c^{2}
$$

$$
(\text { Leg })^{2}+(\text { Other Leg })^{2}=(\text { Hypotenuse })^{2}
$$

c
a

The equation $a^{2}+b^{2}=c^{2}$ is called the Pythagorean equation.
Example: One leg of a right triangle is 8 ft . If the hypotenuse is 17 ft , find the length of the other leg.

$$
\begin{aligned}
& x^{2}+8^{2}=17^{2} \\
& x^{2}+64=289 \\
& x^{2}-225=0 \\
& (x+15)(x-15)=0 \\
& x=15 \text { or } x=-15
\end{aligned}
$$

$x=-15$ is not a valid since the length of a side of a triangle cannot be negative.
The length of the other leg is 15 ft .
Example: One leg of a right triangle is 1 cm more than the other leg. If the hypotenuse is 5 cm , find the length of the legs.

$$
\begin{aligned}
& x^{2}+(x+1)^{2}=5^{2} \\
& x^{2}+(x+1)(x+1)=25 \\
& x^{2}+x^{2}+x+x+1=25 \\
& 2 x^{2}+2 x-24=0 \\
& 2\left(x^{2}+x-12\right)=0 \\
& 2(x+4)(x-3)=0 \\
& 2 \neq 0, x+4=0, x-3=0 \\
& x=-4 \text { or } x=3
\end{aligned}
$$

$x=-4$ is not a valid answer, so the only valid answer is $x=3$.
If one of the legs is $x=3$, the other leg is $x+1=3+1=4$.
The lengths of the other legs are 3 cm and 4 cm .

EXERCISES:

(1) One leg of a right triangle is 24 inches. If the hypotenuse is 25 inches, find the length of the other leg.
(2) One leg of a right triangles is 2 meters less than the other leg. If the hypotenuse is 10 meters, find the length of the legs.
(3) One leg of a right triangle is 5 feet. If the other leg is 1 ft . less than the hypotenuse, find that that leg and the hypotenuse.

Answers

1.) 7 in
2.) $6 \mathrm{~m}, 8 \mathrm{~m}$
3.) $12 \mathrm{ft}, 13 \mathrm{ft}$

