Summation

Notation:

$$\sum_{i=1}^{n} x_i = x_1 + x_2 + x_3 + \dots + x_n$$

 Σ is a Greek letter sigma, this is an instruction to find the sum.

i is the index of the sum, it tells where to start the sum and where to end it.

 $\sum_{i=1}^{n} x_i$ is to add the terms x_i , starting with i = 1, and ending with i = n.

Example: Compute the following.

1.
$$\sum_{i=1}^{4} i = 1 + 2 + 3 + 4 = 10$$

2. $\sum_{i=1}^{4} i^2 = 1^2 + 2^2 + 3^2 + 4^2 = 30$

Exercises:

Compute the following summations.

1. $\sum_{i=1}^{8} i$

2. $\sum_{i=1}^{10} i^2$

- 3. $\sum_{i=1}^{6} 5i$
- 4. $\sum_{i=1}^{4} (10-i)^2$

In many statistics books, the index is often omitted.

 $\sum x$: sum of all x values.

Example: Given a data set:

- 3, 2, 5, 9, 11 a. Find $\sum x$ $\sum x = 3 + 2 + 5 + 9 + 11 = 30$
- b. Find $\sum x^2$ $\sum x^2 = 3^2 + 2^2 + 5^2 + 9^2 + 11^2 = 240$ c. Find $\frac{\sum x}{6}$ $\frac{\sum x}{5} = \frac{30}{5} = 6$
- d. Find $\sum (x-6)^2$ $\sum (x-6)^2 = (3-6)^2 + (2-6)^2 + (5-6)^2 + (9-6)^2 + (11-6)^2 = 60$

Exercises:

Answer the following question using the given data

	12	10	9	7	13	18	14	11	9	7
5.	Find $\sum x$									
6.	Find ∑	<i>x</i> ²								

- 7. Find $(\sum x)^2$
- 8. Find $\sum (x 11)^2$