Summation

Notation:

$\sum_{i=1}^{n} x_{i}=x_{1}+x_{2}+x_{3}+\cdots+x_{n}$
\sum is a Greek letter sigma, this is an instruction to find the sum.
i is the index of the sum, it tells where to start the sum and where to end it.
$\sum_{i=1}^{n} x_{i}$ is to add the terms x_{i}, starting with $\mathrm{i}=1$, and ending with $\mathrm{i}=\mathrm{n}$.

Example: Compute the following.

1. $\sum_{i=1}^{4} i=1+2+3+4=10$
2. $\sum_{i=1}^{4} i^{2}=1^{2}+2^{2}+3^{2}+4^{2}=30$

Exercises:

Compute the following summations.

1. $\sum_{i=1}^{8} i$
2. $\sum_{i=1}^{10} i^{2}$
3. $\sum_{i=1}^{6} 5 i$
4. $\sum_{i=1}^{4}(10-i)^{2}$

In many statistics books, the index is often omitted.
$\sum x$: sum of all x values.
Example: Given a data set:
$3,2,5,9,11$
a. Find $\sum x$
$\sum x=3+2+5+9+11=30$
b. Find $\sum x^{2}$
$\sum x^{2}=3^{2}+2^{2}+5^{2}+9^{2}+11^{2}=240$
c. Find $\frac{\sum x}{6}$
$\frac{\sum x}{5}=\frac{30}{5}=6$
d. Find $\sum(x-6)^{2}$
$\sum(x-6)^{2}=(3-6)^{2}+(2-6)^{2}+(5-6)^{2}+(9-6)^{2}+(11-6)^{2}=60$

Exercises:

Answer the following question using the given data
$12 \quad 109$
7
1318
$\begin{array}{llll}14 & 11 & 9 & 7\end{array}$
5. Find $\sum x$
6. Find $\sum x^{2}$
7. Find $\left(\sum x\right)^{2}$
8. Find $\sum(x-11)^{2}$

